Search results for "Apriori algorithm"
showing 6 items of 6 documents
Hop: Histogram of patterns for human action representation
2017
This paper presents a novel method for representing actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. This paper proposes to learn a codebook of frequent sequential patterns by means of an apriori-like algorithm, and to represent an action with a Bag-of-Frequent-Sequential-Patterns approach. Preliminary experiments of the proposed method have been conducted for action classification on skeletal data. The method achieves state-of-the-art accuracy value in cross-subject validation.
Medical Data Mining for Heart Diseases and the Future of Sequential Mining in Medical Field
2018
Data Mining in general is the act of extracting interesting patterns and discovering non-trivial knowledge from a large amount of data. Medical data mining can be used to understand the events happened in the past, i.e. studying a patients vital signs to understand his complications and discover why he has died, or to predict the future by analyzing the events that had happened. In this chapter we are presenting an overview on studies that use data mining to predict heart failure and heart diseases classes. We will also focus on one of the trendiest data-mining field, namely the Sequential Mining, which is a very promising paradigm. Due to its important results in many fields, this chapter …
Overview on Sequential Mining Algorithms and Their Extensions
2018
The main purpose of data mining is to extract hidden, important and nontrivial information from a database. Sequential Pattern Mining is a data mining technique that aims to obtain and analyze frequent subsequences from sequences of events or items with or without time constraint. The importance of a sequence can be measured based on different factors such as the frequency of their occurrence, their length and also their profit. The pattern mining or the discovery of important and unexpected patterns and information was first introduced in 1990 with the well-known Apriori algorithm. Then, and after many studies on frequent pattern mining, a new approach appeared: Sequential Pattern Mining. …
Datamining: Pemanfaatan Algoritma Apriori dalam Menganalisa Pola-Pola Transaksi yang Terjadi
2012
This paper will be described about implementation and analysis of the well-known apriori algorithm, which is called Market Basket Analysis (MBA) in data mining. This algorithm is widely used to predict the relation among market basket in the huge amount of database. This algorithm is based on the concept of a prefix tree. There are several ways to organize the nodes of such a tree, to encode the items, and to organize the transactions, which may be used in order to minimize the time needed to find the frequent itemsets as well as to reduce the amount of memory needed to store the counters. The rules produced will be used by management of supermarket to organize the items set to increase the…
Fuzzy subgroup mining for gene associations
2004
When studying the therapeutic efficacy of potential new drugs, it would be much more efficient to use predictors in order to assess their toxicity before going into clinical trials. One promising line of research has focused on the discovery of sets of candidate gene profiles to be used as toxicity indicators in future drug development. In particular genomic microarrays may be used to analyze the causality relationship between the administration of the drugs and the so-called gene expression, a parameter typically used by biologists to measure its influence at gene level. This kind of experiments involves a high throughput analysis of noisy and particularly unreliable data, which makes the …
Sequential Mining Classification
2017
Sequential pattern mining is a data mining technique that aims to extract and analyze frequent subsequences from sequences of events or items with time constraint. Sequence data mining was introduced in 1995 with the well-known Apriori algorithm. The algorithm studied the transactions through time, in order to extract frequent patterns from the sequences of products related to a customer. Later, this technique became useful in many applications: DNA researches, medical diagnosis and prevention, telecommunications, etc. GSP, SPAM, SPADE, PrefixSPan and other advanced algorithms followed. View the evolution of data mining techniques based on sequential data, this paper discusses the multiple …