Search results for "Apriori algorithm"

showing 6 items of 6 documents

Hop: Histogram of patterns for human action representation

2017

This paper presents a novel method for representing actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. This paper proposes to learn a codebook of frequent sequential patterns by means of an apriori-like algorithm, and to represent an action with a Bag-of-Frequent-Sequential-Patterns approach. Preliminary experiments of the proposed method have been conducted for action classification on skeletal data. The method achieves state-of-the-art accuracy value in cross-subject validation.

Apriori algorithmSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSeries (mathematics)Computer sciencebusiness.industryComputer Science (all)CodebookValue (computer science)Pattern recognition02 engineering and technologyAction classificationTheoretical Computer ScienceComputingMethodologies_PATTERNRECOGNITIONAction (philosophy)020204 information systemsHistogram0202 electrical engineering electronic engineering information engineeringFrequent pattern020201 artificial intelligence & image processingMultinomial distributionArtificial intelligenceHop (telecommunications)Representation (mathematics)business
researchProduct

Medical Data Mining for Heart Diseases and the Future of Sequential Mining in Medical Field

2018

Data Mining in general is the act of extracting interesting patterns and discovering non-trivial knowledge from a large amount of data. Medical data mining can be used to understand the events happened in the past, i.e. studying a patients vital signs to understand his complications and discover why he has died, or to predict the future by analyzing the events that had happened. In this chapter we are presenting an overview on studies that use data mining to predict heart failure and heart diseases classes. We will also focus on one of the trendiest data-mining field, namely the Sequential Mining, which is a very promising paradigm. Due to its important results in many fields, this chapter …

Apriori algorithmFocus (computing)SequenceComputer science02 engineering and technology030204 cardiovascular system & hematologycomputer.software_genreField (computer science)Domain (software engineering)03 medical and health sciences0302 clinical medicineMultiple time dimensions0202 electrical engineering electronic engineering information engineeringTime constraintA priori and a posteriori020201 artificial intelligence & image processingData miningcomputer
researchProduct

Overview on Sequential Mining Algorithms and Their Extensions

2018

The main purpose of data mining is to extract hidden, important and nontrivial information from a database. Sequential Pattern Mining is a data mining technique that aims to obtain and analyze frequent subsequences from sequences of events or items with or without time constraint. The importance of a sequence can be measured based on different factors such as the frequency of their occurrence, their length and also their profit. The pattern mining or the discovery of important and unexpected patterns and information was first introduced in 1990 with the well-known Apriori algorithm. Then, and after many studies on frequent pattern mining, a new approach appeared: Sequential Pattern Mining. …

Apriori algorithmSequenceSequence databaseProcess (engineering)Computer science02 engineering and technologySequential mining020204 information systems0202 electrical engineering electronic engineering information engineeringTime constraint020201 artificial intelligence & image processingSequential Pattern MiningAlgorithmSequential rule mining
researchProduct

Datamining: Pemanfaatan Algoritma Apriori dalam Menganalisa Pola-Pola Transaksi yang Terjadi

2012

This paper will be described about implementation and analysis of the well-known apriori algorithm, which is called Market Basket Analysis (MBA) in data mining. This algorithm is widely used to predict the relation among market basket in the huge amount of database. This algorithm is based on the concept of a prefix tree. There are several ways to organize the nodes of such a tree, to encode the items, and to organize the transactions, which may be used in order to minimize the time needed to find the frequent itemsets as well as to reduce the amount of memory needed to store the counters. The rules produced will be used by management of supermarket to organize the items set to increase the…

Set (abstract data type)Apriori algorithmTree (data structure)Relation (database)Order (exchange)Computer scienceMarket basketTrieInformationSystems_DATABASEMANAGEMENTAffinity analysisData miningcomputer.software_genrecomputerJurnal Natural
researchProduct

Fuzzy subgroup mining for gene associations

2004

When studying the therapeutic efficacy of potential new drugs, it would be much more efficient to use predictors in order to assess their toxicity before going into clinical trials. One promising line of research has focused on the discovery of sets of candidate gene profiles to be used as toxicity indicators in future drug development. In particular genomic microarrays may be used to analyze the causality relationship between the administration of the drugs and the so-called gene expression, a parameter typically used by biologists to measure its influence at gene level. This kind of experiments involves a high throughput analysis of noisy and particularly unreliable data, which makes the …

Candidate geneApriori algorithmMeasure (data warehouse)Fuzzy control systemBiologycomputer.software_genreCausalityFuzzy logicComputingMethodologies_PATTERNRECOGNITIONDrug developmentData miningddc:004Throughput (business)computer
researchProduct

Sequential Mining Classification

2017

Sequential pattern mining is a data mining technique that aims to extract and analyze frequent subsequences from sequences of events or items with time constraint. Sequence data mining was introduced in 1995 with the well-known Apriori algorithm. The algorithm studied the transactions through time, in order to extract frequent patterns from the sequences of products related to a customer. Later, this technique became useful in many applications: DNA researches, medical diagnosis and prevention, telecommunications, etc. GSP, SPAM, SPADE, PrefixSPan and other advanced algorithms followed. View the evolution of data mining techniques based on sequential data, this paper discusses the multiple …

Apriori algorithmComputer sciencebusiness.industryData stream miningConcept mining02 engineering and technologycomputer.software_genreMachine learningGSP AlgorithmTree (data structure)Statistical classificationComputingMethodologies_PATTERNRECOGNITION020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingData miningArtificial intelligencebusinessK-optimal pattern discoverycomputerFSA-Red Algorithm2017 International Conference on Computer and Applications (ICCA)
researchProduct